DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

POWER OPTION

MODULE II

MODULE II - ELECTRICAL POWER GENERATION AND TRANSMISSION

Introduction

This module is designed to enable the trainee acquire necessary knowledge, skills, attitudes and Competence that can be utilized in Electrical, Electronics and Instrumentation works, and in a general production line

The graduate of this module has the necessary skills for the world of work as a technician or be self employed in an Electrical, Electronics and Instrumentation workshop.

General Objectives

At the end of this module the trainee should be able to:

- Understand the general concepts of electronic and instrumentation systems
- b) Understand industrial measurements and control techniques
- c) Appreciate maintenance of electronics and instrumentation systems
- d) Know the use of ICT in understanding electronics and instrumentation technology
- e) Appreciate the concepts of establishing a related business
- f) Observe safety regulations and standards when performing tasks

Key Competence

At the end of this module, the trainee should be able to demonstrate ability to;

- a) design and assemble electronics circuits
- b) measure and control various physical quantities in process production plant
- c) establish a business in the trade area

The units covered in this module are:

Code

- 17.2.0 Control Systems
- 18.2.0 Analogue Electronics II
- 19.2.0 Engineering Mathematics II
- 20.2.0 Digital Electronics
- 21.2.0 Engineering Drawing and Design
- 22.2.0 Industrial Programmable Logic controllers
- 23.2.0 Business Plan
- 24.2.0 Electric Circuit Analyses
- 25.2.0 Building Electrical Protection and Services
- 26.2.0 Electrical Power Generation and Transmission

17.2.0 CONTROL SYSTEMS

17.2.01 Introduction

This course module is aimed at providing the trainee with theoretical and practical understanding of control systems in the industries. A trainee undertaking this module unit require foundations of Mathematical concepts in Laplace transforms.

17.2.02 General Objectives

At the end of the module, the trainee should be able to:

- a) Understand the principles of engineering control systems
- b) Appreciate system response and performance
- c) Analyze system's stability for a given control task.
- d) Understand the need for compensation and use conventional techniques to compensate practical systems.
- e) Apply analogue system simulation to solve systems' mathematical equations.
- f) Understand the principles and applications of servo systems.

17.2.03 Module Unit Summary and Time Allocation

Engineering Control Systems

Code	Sub Module Unit	Content	Time Hrs
17.2.1	Introduction (System terminology Open and Closed loop	2
17.2.2	Block Diagrams	Canonical form simplification	6
17.2.3	Signal Flow Graphs	 Conversion of block diagram to signal flow diagram Simplification of system loop 	6
17.2.4	System Modelling	 Need for modelling Transfer functions for simple networks Practical systems 	6
17.2.5	System Performance	Test signals Dynamic responses Damping	6
17.2.6	Stability	 Types of Stability Routh's stability Criterion Nyquist stability Criterion Bode Plots 	16

17.2.9	computing and system simulation Servo Systems	 Principles of an Operational Amplifier (Op-amp) Op-amp arithmetic circuit Solution of equations Scaling Servo mechanism AC and dc servo amplifiers Phase sensitive rectifiers Thyristor controlled dc servo 	8
		 systems Operation of stepper motors Characteristics curves for servo motors 	

17.2.1 INTRODUCTION TO CONTROL

Theory

17.2.1T0 Specific Objectives

By the end of the sub-module unit, the trainee should be able to:

- a) explain control terms
- b) compare and contrast open and closed loop systems

Content

17.2.1T1 Control system terms

- i) Control
- ii) System
- iii) Control system
- iv) Man-made system
- v) Natural system
- vi) Hybrid system
- vii) Controlled variable
- viii) Reference variable
- ix) Plant

17.2.1T2 Open and closed loop system

- i) Feedback
- ii) Features of open loop
- iii) Features of closed loop
- iv) Advantages and disadvantages

Competence

The trainee should have the ability to: identify and select types of control systems for electrical systems

Suggested teaching/Learning Activities

- Illustration
- Note taking
- Visits to industries

Suggested teaching/Learning Resources

- Sample practical control units

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.2 BLOCK DIAGRAMS

Theory

17.2.2T0 Specific Objectives

By the end of the sub module unit the trainee should be able to simplify control system block diagram

Content

- 17.2.2T1 Simplification of block diagrams
 - Canonical form
 - ii) Transfer functions
 - iii) Superposition
 - iv) Error ratio
 - v) Primary feedback ratio

Competence

The trainee should have the ability to: establish the transfer functions for various basic and mechanical systems

Suggested teaching/Learning Activities

- Illustration
- Note taking

Suggested teaching/Learning Resources

- Sample practical control units
- Simulators

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.3 SIGNAL FLOW GRAPHS

Theory

- 17.2.3T0 Specific Objectives By the end of the sub module unit the trainee should be able to:
 - a) convert block diagrams to flow diagrams
 - b) simplify system loops

Content

- 17.2.3T1 Conversion of block diagrams to flow diagrams
 - i) Nodes
 - ii) Sinks
- 17.2.3T2 Simplification of system loops
 - i) Masons rule
 - ii) Complex loop
 - iii) Loop reduction

17.2.4 SYSTEM MODELLING

Theory

- 17.2.4T0 Specific Objectives By the end of the sub- module unit, the trainee should be able to:
 - a) explain the need for systems modelling
 - b) derive transfer functions for simple networks and determine their transfer functions.
 - c) represent practical systems with transfer functions.

Content

- 17.2.4T1 Need for modelling
- 17.2.4T2 Derivation of transfer functions for simple networks
 - i) Electrical
 - ii) Mechanical
 - iii) (S), jω, D operations
- 17.2.4T3 Presentation of practical systems
 - i) Generators and Motors
 - ii) Temperature control systems
 - iii) Solving problem with given data

Competence

The trainee should have the ability to: convert block diagrams to signal flow diagrams

Suggested teaching/Learning Activities

- Illustration
- Note taking

Suggested teaching/Learning Resources

Sample practical control units

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.5 SYSTEM PERFORMANCE

Theory

- 17.2.5T0 Specific Objectives By the end of the submodule unit, the trainee should be able to
 - a) describe test signals

- b) explain the dynamic response of 1st and 2nd order systems
- analyze the effects of various methods of damping

Content

- 17.2.5T1 Test signals
 - i) Step
 - ii) Velocity
 - iii) Acceleration
 - iv) Sinusoidal
 - v) Unity impulse
- 17.2.5T2 Dynamic response for 1st and 2nd order systems
 - i) Response terms
 - ii) Standard 2nd order equation
 - iii) Response graphs
 - iv) Derive dimensional 2nd order equation Damping methods
- 17.2.5T3 Damping methods
 i) Velocity feedback
 - ii) Error rate
 - iii) Viscous damping
 - iv) Effects of damping
 - v) Calculations of limiting values

Suggested teaching/Learning Activities

- Illustration
- Note taking

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.6 STABILITY

Theory

- 17.2.6T0 specific objectives

 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) explain types of stability
 - describe Routh's stability criterion
 - c) explain Nyquist diagrams
 - d) plot bode plot
 - e) construct Nichol's charts
 - f) sketch Root Locus diagrams

Content

17.2.6T1 Types of Stability

17.2.6T3

- Bounded input bounded output
- ii) Relative stability
- iii) Absolute stability
- 17.2.6T2 Routh's stability criterion
 - i) Array formation
 - ii) Determination of stability
 - iii) Calculations
 Nyquist diagrams
 - i) Statement of Nyquist stability criterion
 - ii) Nyquist diagram
 - iii) Determination of gain and phase margins
 - iv) Determination of gain and phase cross over frequency
 - v) Calculation of a value K, required for stability
 - vi) Description of type O, I, II and III of Nyquist systems
 - vii) Sketches for open loop frequency

response for different systems

- viii) Analyses of Inverse Nyquist curve
- ix) Derivation of m and n circles
- x) Determination of maximum value of M and and the frequency at which it occurs
- xi) Determination of the relationship between M-circle and inverse Nyquist plot
- xii) Evaluation of band width.

17.2.6T4

- Bode plot
- Logarithmic diagrams for simple systems asymptotes for magnitude
- ii) Determination of:
- iii) Phase and gain cross over frequency
- iv) Phase and gain margins
- v) Stability
- vi) Output input functions from a given asymptotic plots

17.2.6T5 Nichol's chart

- i) Description of Nichol's chart
- ii) Rectangular coordinates
- iii) Identification of M and N circles
- iv) Open loop frequency response curves
- v) Determination of:
- vi) Phase and gain margin
- vii) M_{max} and ω_r

viii) Band width

ix) Closed loop
frequency response

17.2.6T6 Root locus

- i) Construction
- ii) Analysis

Suggested teaching/Learning Activities

- Illustration
- Note taking

Suggested teaching and Learning Resources

- Text books
- Appropriate charts and graphs
- Equipment
- Mat lab programmes
- internet

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.7 COMPENSATION

Theory

17.2.7T0 Specific objectives

By the end of the sub module unit, the trainee should be able to:

- a) explain the need for compensating networks
- b) derive transfer function of compensating networks
- c) design compensating network

Content

- 17.2.7T1 Need for system compensation
- 17.2.7T2 Compensating networks transfer functions

17.2.7T3 Compensation network

- i) Lead
- ii) Lag
- iii) Lead lag
- iv) Design bode
- Lead
- Lag
- Lead-lag
- Compensation using
 3- term controller

17.2.7C Competence

The trainee should have the ability to: design compensating net works for control systems

Suggested teaching /learning resources

- Text books
- Equipment
- Appropriate charts and graphs
- Sample practical control units

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.8 ANALOGUE COMPUTING SYSTEM SIMULATION

Theory

17.2.8T0 Specific objectives

By the end of the sub module unit, the trainee should be able to:

- a) describe need for simulation
- b) describe the principles of an operational amplifier
- c) explain op-amp arithmetic circuit

- d) solve equations using operational amplifiers
- e) apply scaling methods

Content

- 17.2.8T1 Need for Simulation
- 17.2.8T2 Operation of Operational amplifier
- 17.2.8T3 Operational amplifier arithmetic circuit
- 17.2.8T4 Solution of equations using operational amplifier
 - i) Summer
 - ii) Inverter
 - iii) Integrator
 - iv) Differentiator
 - v) Logarithmic amplifier
 - vi) Comparator
 - vii) Differential equations using Op Amp
- 17.2.8T5 Scaling method
 - i) Amplitude
 - ii) Time

Practice

17.2.8P0 Specific objectives

By the end of the sub module unit, the trainee should be able to assemble electronic circuit to carry out analogue computing techniques

Content

17.2.8P1 Analogue computing techniques

- i) Inverting
- ii) Integrating
- iii) Comparing
- iv) Summing
- v) Differentiating
- vi) Logarithmic

17.2.8C Competence

The trainee should have the ability to:

- Interconnect analogue computer component to form a system
- ii) Perform measurements on systems

Suggested teaching/Learning Activities

- Illustration
- Note taking
- Simulation

Suggested Teaching /Learning resources

- Text books
- Analogue computer components

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments

17.2.9 SERVO SYSTEMS

Theory

17.2.9T0 Specific objectives

By the end of the sub
module unit, the trainee
should be able to:

- a) describe servo mechanisms
- b) describe the difference between ac and dc servo amplifiers
- c) explain phase sensitive rectifiers
- d) explain the operation of thyristor controlled de servo systems

- e) explain the operation and control of stepper motors
- sketch characteristics curves of ac and dc servomotors
- g) solve stepper motor related problems

Content

- 17.2.9T1 Servo mechanisms
 - i) Position
 - ii) Speed
 - iii) Acceleration
- 17.2.9T2 Servo amplifiers
 - i) DC
 - ii) AC
- 17.2.9T3 Phase sensitive rectifier
 - iii) Synchros
 - iv) Applications
- 17.2.9T4 Operation of Stepper motors
 - i) Constructions
 - ii) Operations
 - iii) Control circuits
 - iv) Calculations
 - v) Interfacing
 - vi) Applications
- 17.2.9T5 Characteristics curves of ac and dc servomotors Sketching
- 17.2.9T6 Calculations

Practice

- 17.2.9P0 Specific Objectives
 By the end of the submodule unit the trainee should be able to:
 - a) carry out measurement of an ac and dc servomechanism
 - b) take measurements on the performance of a stepper motor

Content

- 17.2.9P1 Measurements on a Servomechanisms
- 17.2.9P2 Measurements Stepper motors
 - i) Phase tests

17.2.9C Competence

The trainee should have the ability to: use a servo motor in a control system

Suggested teaching/Learning Activities

- Illustration
- Note taking
- Practical exercises

Suggested Teaching /Learning resources

- Text books
- Servo motors
- Phase sensitive rectifiers

Suggested Evaluation Methods

- Oral tests
- Timed written tests
- Assignments