2705/301 2709/301 2707/301 2710/301

MATHEMATICS III AND SURVEYING III

June/July 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

MODULE III

MATHEMATICS III AND SURVEYING III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Scientific calculator;

Mathematical tables:

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions choosing at least TWO questions from section A, at least TWO questions from section B and ONE question from either section.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Use the tables provided in the question paper.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2019 The Kenya National Examinations Council

Turn over

Answer at least TWO questions from this section.

(a) Given that X_n is an approximation to the root of equation $x^3 - 5x + 3 = 0$, use Newton Raphson method to show that a better approximation is given by:

$$x_{n+1} = \frac{2x_n^3 - 3}{3x_n^2 - 5}$$

hence, by taking $x_0 = 0.5$, determine the root correct to five decimal places. (9 marks)

(b) Table 1 represents a polynomial function f(x):

Table 1:

x	-1	0	1	2	3	4	5
f(x)	8	3	-2	-1	12	43	98

Use the Newton-Gregory interpolation to determine f(x), and hence calculate:

- (i) f(-1.5),
- (ii) f(4.6).
- (a) Given the matrices:

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & -2 \\ 3 & 4 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 & 4 \\ 2 & -2 & -1 \\ 3 & -1 & 0 \end{pmatrix}$$

Show that $(AB)^T = B^T A^T$.

(9 marks)

(b) Tensions T₁, T₂ and T₃ in Newton's acting on a mechanical system satisfy the simultaneous equations below:

$$3T_1 + 2T_2 + T_3 = 14$$

$$T1 - T_2 + 3T_3 = 4$$

$$4T_1 + 3T_2 + 5T_3 = 23$$
.

Use the inverse matrix method to determine the value of the tensions.

(11 marks)

- (a) The life span of 1800 light bulbs is normally distributed with a mean of 900 and standard deviation of 150 hours. Determine the number of light bulbs with life span of:
 - (i) more than 1200 hours;
 - (ii) between 600 and 1050 hours.

(8 marks)

(b) A continuous random variable x has a probability density function f(x) defined by:

$$f(x)$$

$$\begin{cases}
Ke^{-x}, x \ge 0 \\
0, elsewhere
\end{cases}$$

Determine:

- (i) value of constant K;
- (ii) mean;
- (iii) $P(0 \le x \le 0.5)$.

(12 marks)

(a) A structural engineer is asked to grade a junior college trainee. In order to ensure that
he treats the trainee fairly, the engineer repeats his grading. The results are tabulated in
table 2.

Table 2:

Criteria	A	В	C	D	E	F	G	H	I	J	K	L
1 st grading												
2 nd grading												

Using Spearman Rank correlation determine if the two gradings are consistent.

(10 marks)

(b) An experiment was carried out on a small cantilevered steel beam. Various masses to the converge of the beam and corresponding deflections measured as shown in Table 3.

Table 3:

Mass x (grammes)	Deflection y (mm)
0	0
50.15	0.6
99.90	1.8
150,05	3.0
200.05	3.6
250.20	4.8
299.95	6.0
350.05	6.2
401.00	7.5

- (i) Determine the regression equation.
- (ii) Predict the deflection when the mass is 220 grams.

(10 marks)

SECTION B: SURVEYING III

Answer at least TWO questions from this section.

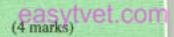
(a) State three sources of errors in horizontal tacheometry.

(3 marks)

(b) Table 4 shows tacheometric observations taken at point R with the instrument height being 1.50 m. The tacheometric constants were 100 and zero. The distance between X and Y was measured as 183.42 m. Assuming the ground was level within the triangle RXY and the reduced level at point R was 1042.80 m above datum level. Calculate the volume of filling required to make the area level with the highest point. (17 marks)

Table 4:

Instrument Station	Vertical Angle	S	Staff		
		Bottom	Middle	Тор	Station
R	+10*30'	1.80	3.05	4.30	X
	+8*05'	2.40	3.15	3.90	Y


2705/301 2707/301 June/July 2019

2709/301 2710/301

4

Turn over

(a) State four characteristics of mass haul diagram.

- (b) A proposed embarkment on a ground sloping at 1 in 20 has side slopes of 1 in 2.5. If the width of road formation is 20 m and its formation height is 5.0 m above the ground. Sketch and label the cross section of embarkment and determine:
 - (i) the side widths;

6.

(ii) the area of the cross section.

(16 marks)

(a) Table 5 shows levels taken during a survey carried out to lay a sewer line. The distance between manhole A and manhole B is 30 m and the distance between manhole B and manhole C is 43 m. The gradient of sewer line is 1:100.

Determine:

- (i) ground reduced levels for manhole B and C;
- (ii) inverted levels for manhole A, B and C;
- (iii) height of sight rails above the ground level at manhole A, B and C when the boning rod is 1.5 m in length.

(14 marks)

Table 5:

Instrument Station	Staff readings (m)						
	IL at MLA	G.L at Mh A	G.L at Mh B	G.L at Mh C			
A	3.578	2.987	2.163	1.985			

Reduced level at Ground level at MH A = 1895.86 m

G.L = Ground level

I.L. = Inverted level

Mh = Man hole

(b) State six factors considered during the setting out of road alignment.

(6 marks)

(a) Define photogrammetry. (2 marks),+ Describe the following methods of photogrammetry: (b)

(i) aerial photogrammetry;

(ii) terrestrial photogrammetry. 3 B AUG 2019

(6 marks)

State three advantages and three disadvantages of photographs. (c)

(6 marks)

Sketch and label the parts of a vertical aerial photograph. (d)

(6 marks)

THIS IS THE LAST PRINTED PAGE

2705/301 2707/301 June/July 2019

2709/301 2710/301