DESIGN OF WASTEWATER COLLECTION AND TREATMENT INFRASTRUCTURE

UNIT CODE: CON/CU/CET/CR/09/6/A

Relationship to Occupational Standards

This unit addresses the unit of competency: Design Wastewater Collection and Treatment Infrastructure

Duration of Unit: **200 hours**

Unit Description

This unit covers the competencies required to design waste water collection and treatment infrastructure. It involves collection of wastewater infrastructure design data, analysis of wastewater infrastructure design data, and calculation of wastewater infrastructure design parameters, drawing wastewater infrastructure units and compiling wastewater infrastructure design report.

Summary of Learning Outcomes

- 1. Apply hydraulic engineering principles
- 2. Analyse structural elements
- 3. Design structural elements
- 4. Collect wastewater infrastructure design data
- 5. Analyse wastewater infrastructure design data
- 6. Calculate wastewater infrastructure design parameters
- 7. Draw wastewater infrastructure units
- 8. Compile wastewater infrastructure design report

Learning Outcomes, Content and Suggested Assessment Methods

Learning Outcome	Content Suggested Assessm	
		Methods
1. Apply hydraulic	Fluid properties	Written test
engineering	 Viscosity 	• Interview
principles	• Density	Oral question
	o Mass	Assignments
	o Volume	 Supervised
	 Compressibility 	exercises
	o Pressure	Practical tests

0	Surface tension
0	Specific gravity
0	Specific
0	weight
• Fluid	pressure measurement
0	Manometers
0	piezometer,
0	mechanical gauges,
0	Hydraulic bench
0	Statement of Pascal's
	law
0	Application of
	Pascal's Law Total
	pressure and centre of
	pressure;horizontally
	immersed plane
	surface, vertically
	immersed plane
	surface, inclined
	immersedplane
	surface)
0	Basic definitions;
	area of flow, mean
	velocity, rate of flow.
0	Types of flow;
0	steady and unsteady
0	uniform and non-
	uniform,
0	laminar and turbulent
	(Reynold's
	experiment)
0	Compressible and
	incompressible flow.
0	Flow equations;
	discharge equation,
	continuity equation,
	Bernoulli's equation)

• 1	Discharge and velocity
1	neasurement
	• Venturimeters
	• Pitot and pitot static
	tubes
	• Orificmeter
	• Orifices and
	mouthpieces
	• Weirs and notches
	• Flow in pipes
• 1	Head losses in pipes; major
1	osses (Darcy's formula,
	Chezy's formula, Manning's
f	formula, Hazen Williams
f	formula)
	• Minor losses (due to
	fittings, enlargement,
	contractions),
	• Hydraulic grade line,
	total head loss.
	 Total energy line
	• Flow in open
	channels
• 5	Simple channel sections;
1	rectangular, triangular,
t	rapezoidal, circular.
	• Parameters of open
	channel; wetted
	perimeter, hydraulic
	mean depth/radius,
	hydraulic gradient.
	• Application of
	Chezy's and
	Manning's equations
	to open channel flow
	problems; simple
	sections and
	compound sections

	 Design of most 	
	economical channel	
	sections ; rectangular,	
	trapezoidal	
2. Analyse	 Properties material 	• Written test
structural	• Stress, strain, ductility,	• Interview
elements	malleability,	• Oral question
	• Types of Stresses,	• Assignments
	Working Stress: Types of	Supervised
	Strain,	exercises
	• Stress-strain relationship:	Practical Tests
	Stress-strain diagram,	
	 Hooke's law, Young's 	
	modulus, Definition	
	• Moments in beams	
	• Types of beams: Simple,	
	Cantilever, Overhanging,	
	• Type of beam supports,	
	Hinged or pinned	
	supports, Fixed or	
	encastre supports, Rollers	
	and simple supports,	
	 Types of loads/Forces 	
	and loading systems:	
	Point loads, Uniformity	
	distributed loads,	
	uniformly varying loads,	
	combination of point	
	loads and uniformly	
	distributed loads,	
	 Support reactions: 	
	Calculation of support	
	reactions, signs and	
	taking moments at a	
	given reaction point,	
	• Calculation of Shear	
	forces and bending	
	moments: Definitions,	

Sign conventions,
Calculations of shear
force and bending
moments at critical
points.
• Determination of
maximum Sheaf forces
and Bending moments:
Graphical
representations: Shear
force and bending
moment diagrams.
Section properties
• Centre of gravity and
Centroid: Definition of
centre of gravity and
centroid, Determination
of centre of gravity and
centroid by (Calculation,
Graphical) Solve simple
problems involving
centre of gravity or
centroid
 Second moment of area
(I): Definition,
Derivation of second
moment of area formula.
• Section modulus (Z):
Definition, Calculation of
section modulus
 Radius of gyration
• Theory of simple bending
• Basic assumptions:
General principles:
Bending tendency,
Neutral axis, Variation of
stress/strain in a beam

	C = 1.1	
	section, General theory of bending equation:, Moment of resistance	
	(rectangular beam) :	
	• Forces in frames	
	• Types of Frames: Perfect	
	frame, imperfect frame,	
	redundant frame, Nature	
	of forces in frames:	
	Tension and compression	
	forces,	
	• Analysis of forces in	
	frames: Methods of	
	analysis: method of	
	sections, method of joint	
	resolution	
	• Deflection In Beams	
	 General Principles: 	
	Effects of deflection,	
	General differential	
	equation for deflection,	
	Derivation of the general	
	slope and deflection	
	formula, double	
	integration.	
3. Design	• Design of Reinforced	• Written test
structural	Concrete Structures	• Interview
elements	• Beams: simply supported	• Oral question
	beams	• Assignments
	• Columns: short columns,	 Supervised
	centrally axially loaded	exercises
	and eccentrically loaded-	Practical tests
	uniaxial and biaxial	
	bending	
	• Floors/slabs: one way	
	spanning and two way	
	spanning suspended slabs	

4. Collect wastewater infrastructure design data	 Foundations: isolated footing/pad footing and strip footing Design of Timber Structures Timber grading: Visual / machine grading; Visual / machine grading, Stress grading, Stresses: Grade, Basic, Dry, Wet, Permissible, Strength class Design of Steel Struts Ties Purlins Joists Mapping the area Tools preparation Data collection/ Quantity of Wastewater Quantity of wastewater (Design periods, wastewater generation rates (urban, periurban, rural) Storm water infiltration and exfiltration. 	 Written test Interview Oral question Assignments Supervised exercises Practical tests
5. Analyze wastewater infrastructure design data	 Categorize population into various classes Analyse and clean climatic and hydrological data Produce topographical maps and ground profiles from survey data 	 Written test Interview Oral question Assignments Supervised exercises Practical tests

6.	Calculate	Population projection	•	Written test
	wastewater	Population equivalent	•	Interview
	infrastructure	Discharge /volume	•	Oral question
	design	Velocities	•	Assignments
	parameters	• Load estimation (BOD, TSS,FC)	•	Supervised
		• Computations of profile data		exercises
		• Sizing of the pipes	•	Practical tests
		• Hydraulic flow in pipes		
		• Depth of flow		
		• Gradient		
		• Sizing of treatment units		
7.	Draw	Draw profiles	•	Written test
	wastewater	• Draw:	•	Interview
	infrastructure	• Sewer Line	•	Oral question
	units	• Sewer Appurtenances	•	Assignments
		• Screens	•	Supervised
		• Grit Chamber		exercises
		 Sedimentation Tanks 	•	Practical tests
		 Trickling Filters 		
		 Activated Sludge Unit 		
		 Stabilization Ponds 		
		• Oxidation Ditch		
		• Aerated Lagoons		
		• Storm Water Drains		
		• Sludge Treatment Units		
	~ "	• Legal requirements for approvals		
8.	Compile	• Technical report writing	•	Written test
	wastewater	• Legal requirements	•	Interview
	design neg off		•	Oral question
	design report		•	Assignments
			•	Supervised
				exercises
			•	Practical tests

Suggested Methods of Instruction

- Group discussions
- Demonstration by trainer
- Online videos

- Power point presentation •
- Exercises by trainee

Recommended Resources

- Scientific calculators •
- Relevant reference materials •
- Stationeries
- GPS
- CAD and GIS Software
- Computer lab
- Relevant practical materials
- Laboratories (chemical, biological & soils)
- Internet
- Concrete workshop
- Hydraulics laboratory
- Design codes

- Plumbing and pipe fitting workshop