1521/203 1601/203 1602/203 MATHEMATICS II Oct./Nov. 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION) MODULE II

MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/calculator.

Answer any FIVE of the EIGHT questions in the answer booklet provided.

All questions carry equal marks.

All necessary working must be clearly shown.

Maximum marks for each part of a question are as indicated.

Candidates should answer all questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

1. (a) Prove the identities:

(i)
$$\frac{1+\sin\theta}{\sin\theta\cos\theta} = \tan\theta + \cot\theta + \sec\theta$$

(ii)
$$\sec^4 \theta - \sec^2 \theta = \tan^2 \theta + \tan^4 \theta$$

(6 marks)

(b) Solve the equations:

(i)
$$3\tan^2\theta + 5 = 7\sec\theta$$

(ii)
$$4\cos\theta - 3\sin\theta = 2.5$$

for values of θ between 0° and 360° inclusive.

(14 marks)

2. (a) Determine the values of the constants P and Q in the equation

$$P \cosh 3x - Q \sinh 3x = e^{3x} + 5e^{-3x}$$

(5 marks)

(b) Prove the identities by using exponential definition:

(i)
$$1 - \tanh^2 x = \sec h^2 x$$

(ii)
$$1 + \operatorname{cosec} h^2 x = \coth^2 x$$

(6 marks)

(c) Solve the equations:

(i)
$$\cosh 2x - 3 \sinh x = 0$$

(ii)
$$3 \tanh^2 x = 5 \operatorname{sec} h x + 1$$

correct to four decimal places.

(9 marks)

3. (a) Find $\frac{dy}{dx}$ for the functions:

$$(i) y = x \sin^2(3x)$$

(ii)
$$y = \frac{e^{2x}}{(x+1)}$$

(6 marks)

(b) Given that $z = \cos(xy)$, show that

$$\frac{\partial^2 z}{\partial y^2} = -\left(x^2 + y^2\right)z$$

(5 marks)

1521/203 1601/203 1602/203 Oct./Nov. 2022

(c)	A solid cylinder of radius r cm and height h cm has a volume, V of 500 cm ³ .

- (i) Express the total surface area, A cm² in terms of r.
- (ii) Determine the value of r for which A will be minimum correct to one decimal place.

(9 marks)

A.

(a) Given that

 $(1+kx)^n = 1 + 48x + 1008x^2 + \dots$ where k is a constant, determine the value of:

- (i) n
- (ii) k

(7 marks)

- (b) (i) Determine the first three terms in the binomial expansion of $(1+x)^{\frac{1}{2}}$.
 - (ii) Hence by setting $x = \frac{1}{16}$ in b(i), estimate the value of $\sqrt{17}$ correct to three decimal places.

(6 marks)

(c) Determine the term independent of x in the binomial expansion of $(x^2 + \frac{1}{x})^{12}$. (7 marks)

3. (a) Given the position vectors of the vertices of a triangle ABC as

$$A = 20i - j$$
, $B = 30i$ and $C = 10i + 5j$.

Determine the:

- (i) angle between AB and AC.
- (ii) area of the triangle ABC.

(10 marks)

- (b) Given that a vector field $\tilde{E} = x^2y\tilde{i} + xz^2\tilde{j} + xy^2z\,\tilde{k}$ and a scalar field $\phi = x^2y^2z^2$, determine at (1, 1, 1) the values of:
 - (i) $|\nabla \phi|$;
 - (ii) ∇•*E*;
 - (iii) $\nabla \times E$.

(10 marks)

1521/203 1601/203 1602/203 Oct./Nov. 2022

3

Turn over

6. (a) Three forces F_1 , F_2 and F_3 acting at a point satisfy the simultaneous equations:

$$F_1 + 2F_2 + F_3 = 8$$

$$2F_1 - F_2 + F_3 = 3$$

$$F_1 + F_2 - 2F_3 = -3$$

Solve the equations using substitution method.

(10 marks)

(b) Evaluate the integrals:

(i)
$$\int_0^\pi (\cos 2x - \sin 3x) \, dx$$

(ii)
$$\int_0^4 (\sqrt{x} + 1) dx.$$

(5 marks)

(c) Use integration to determine the area of the region bounded by the curve $y = 2x - x^2$, x -axis and x = 0 and x = 2 (5 marks)

(a) Given the matrix

$$M = \begin{bmatrix} (k-3) & -2 & 0 \\ 1 & k & -2 \\ -1 & -2 & -2 \end{bmatrix}$$

where k is a constant, determine the possible values of k such that the matrix M is singular. (10 marks)

(b) Three currents I_1 , I_2 and I_3 in amperes satisfy the simultaneous equations:

$$3I_1 + 2I_2 + I_3 = 7$$

 $I_1 - 2I_2 - I_3 = 1$
 $I_1 + 3I_3 = 11$

Use inverse matrix method to solve for I₁, I₂ and I₃.

(10 marks)

(a) Given the matrix

$$B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}, \text{ show that } 1 - 7B + 6B^2 - B^3 = 0$$

where I is an identity matrix.

(9 marks)

(b) Three emfs E_1 , E_2 and E_3 in an inductive circuit satisfy the simultaneous equations:

$$E_1 + 3E_2 + 2E_3 = 14$$

 $2E_1 + E_2 + E_3 = 7$

$$3E_1 + 2E_2 - E_3 = 7$$

Use Cramer's rule to solve for E_1 , E_2 and E_3 in volts.

(11 marks)

THIS IS THE LAST PRINTED PAGE.

easywet.com

1521/203 1601/203 1602/203 Oct./Nov. 2022