1601/103 1602/103 MATHEMATICS I June/July 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

MODULE I

MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator.

This paper consists of **EIGHT** questions.

Answer any FIVE questions in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. Evaluate the expressions: (a)

$$(\mathrm{i}) \qquad \frac{2}{3} \mathit{of} \Big\{ \Big(\frac{1}{5} + \frac{1}{3} \Big) \div \Big(\frac{1}{2} - \frac{1}{7} \Big) \Big\}$$

(ii)
$$\frac{27^{\frac{2}{3}} \times 16^{-\frac{1}{2}}}{\left(\frac{1}{9}\right)^2 \times \left(\frac{1}{2}\right)^3}$$
 (7 marks)

(b) Solve the equations:

(i)
$$\log_{10}(x^2-10)-\log_{10}2=2$$

(ii)
$$\log_{10}(x+7) - \log_{10}(x-2) = 1$$
 (7 marks)

(c) Simplify:

(i)
$$\log_4\left(\frac{1}{8}\right) + \log_2\left(\frac{1}{4}\right) + \log_{\frac{1}{27}}\left(\frac{1}{3}\right)$$

(ii)
$$\frac{\log_{10}81 - 2\log_{10}3}{\log_{10}16 - 2\log_{10}2}$$
. Correct to 2 decimal places. (6 marks)

2. Solve the equations: (a)

> $6^{3x+2} = 30$. Correct to 4 decimal places. (i)

(ii)
$$3^{x+2} \times \left(\frac{1}{9}\right)^{x-3} = \frac{1}{81}$$
 (6 marks)

(b) Convert:

> (i) 10011001₂ to a denary member.

(4 marks) (ii) 49₁₀ to a binary number.

Figure 1 shows a d.c network. Use inverse matrix method to determine the values of (c) the currents I_1 and I_2 . (10 marks)

- Given the matrices $A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$ and $B \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, determine: 3.
 - 2A + 5B(i)
 - $A(BB^T)$ (ii) (9 marks)
 - (i) Given the matrix $C = \begin{bmatrix} 5 & 3 \\ 2 & 5 \end{bmatrix}$, determine C^{-1} . (b)
 - (ii) Hence solve the equations.

$$5I_1 + 3I_2 = 25$$

 $2I_1 + 5I_2 = 29$ (8 marks)

(c) Solve for x:

$$\begin{vmatrix} (x+2) & 3 \\ 3 & (x-2) \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = 0$$
 (3 marks)

- 4. Simplify the expressions: (a)
 - $(x^4y^3)^{\frac{1}{2}} \times (x^{\frac{1}{2}}y^{\frac{1}{4}})^3 \div (xy^2)^{\frac{1}{3}}$
 - (ii) $\frac{(mn^2)^3}{(m^{\frac{1}{2}}n^{\frac{1}{4}})^4}$ (9 marks)
 - The current I amperes in an a.c. circuit is given by $I = \frac{V}{\sqrt{R^2 + X^2}}$. Evaluate the (b) resistance R ohms when X = 11 ohms, V = 250 volts and I = 12.77 amperes. Correct to 2 decimal places. (6 marks)
 - Evaluate the resistance R_T , of a parallel circuit given by $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ when $R_1 = 5\Omega$, $R_2 = 7\Omega$ and $R_3 = 12\Omega$ correct to 2 decimal places. (5 marks) (c)
- 5. In a geometric progression, the first term is 16 times the fifth term and the third term (a) is 16. Determine the:
 - (i) tenth term;
 - (ii) sum of the first twelve terms.

- (10 marks)
- (b) The third and the sixth terms of a geometric progression are 54 and 1458 respectively. Determine the:
- V= (R
- common ratio; 1, +1, (i)
- first term.

(5 marks)

179 = 0-426 410 1 1 2 341 80 35

90

- (c) Four technicians shared Ksh 1800 to buy tools. The amount was shared in such a way that their shares formed a geometric progression. Given that the largest share was 8 times the smallest share, determine the individual shares. (5 marks)
- The sum of the first two terms of an Arithmetic Progression is 3 and the seventh term 6. (a) is 40. Determine the:
 - first term; (i)
 - (ii) common difference:
 - (iii) sum of the first 40 terms.

(6 marks)

- (b) The seventeenth term of an Arithmetic Progression is 14 and the sum of the first 25 terms of the progression is 200. Determine the:
 - (i) first term:
 - (ii) number of terms of the series that are less than 100.

(10 marks)

- A craftsman is planning to save for the next 48 months. He plans to save Ksh 300 (c) initially and each successive month thereafter to save an extra Ksh 5 compared to the previous month. Determine the:
 - (i) amount he will save on the twelfth month;
 - (ii) total amount he will have saved at the end of the period.

(4 marks)

7. Table 1 shows the distribution of measurements of 100 pieces of wire. (a)

Table 1

Measurements	Frequency
40 - 43	5
44 - 47	10
48 - 51	12
52 - 55	35
56 - 59	28
60 - 63	10

Determine the following correct to 2 decimal places:

- (i) mode:
- (ii) mean;
- (iii) standard deviation.

(10 marks)

(b) Table 2 gives the distribution of weights of 60 students in a class.

Table 2

Weights	Frequency
50 - 59	4
60 - 69	6
70 - 79	10
80 - 89	12
90 - 99	13
100 - 109	5

Calculate the:

- (i) median;
- (ii) 9th decile;
- (iii) 60th percentile.

(10 marks)

- 8. (a) The second, third and ninth terms of an Arithmetic progression are three consecutive terms of a geometric progression. Determine the common ratio of the progression. (10 marks)
 - (b) Express as a single logarithm to the base 2.
 - (i) $2\log_2 x + 3\log_4 y 2\log_8 z$
 - (ii) $2\log_2 x + 3\log_2 y 5\log_2 z$

(7 marks)

- (c) Given the matrix $A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$, determine:
 - (i) A^3
 - (ii) |A|A.

(3 marks)

THIS IS THE LAST PRINTED PAGE.