1601/103 1602/103 MATHEMATICS I Oct./Nov. 2021 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

MODULE I

MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- Given the matrices $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$, determine:
 - (i) 4A-3B;
 - $(BA)^T + A$. (ii)

(7 marks)

- Determine the inverse of the matrix $C = \begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}$ (b) (i)
 - (ii) Hence, solve the simultaneous equations:

$$3E_1 + 2E_2 = 12$$
$$4E_1 - E_2 = 5$$

(7 marks)

Determine the possible values of x for which the matrix $D = \begin{bmatrix} (x-3) & 2 \\ 2 & (x-3) \end{bmatrix}$ is (c) singular.

(6 marks)

Evaluate the expressions:

(i)
$$\frac{7}{15} of \left(15 \times \frac{5}{7}\right) + \left(\frac{3}{4} \div \frac{15}{16}\right)$$

(ii)
$$\frac{(3^2)^{\frac{3}{2}} \times (8^{\frac{1}{3}})^2}{3^2 \times (4^3)^{\frac{1}{2}} \times 9^{-\frac{1}{2}}}$$

(6 marks)

- (b) Solve the equations:
 - (i)

(7 marks)

- (c) Simplify:
 - (i)

$$3^{2} \times (4^{3})^{\frac{1}{2}} \times 9^{-\frac{1}{2}}$$
Solve the equations:

(i) $\log_{5}(4t+7) - \log_{5}t = 2$

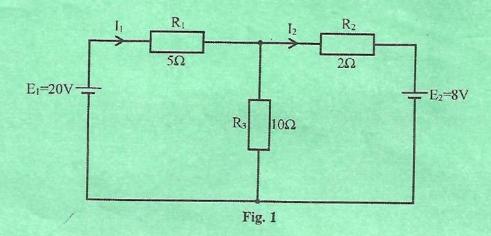
(ii) $\log_{2}y = \frac{9}{\log_{2}y}$.

Simplify:

(i) $\log_{4}8 - \log_{27}3$

(ii) $\frac{\log_{10}16 - \frac{1}{2}\log_{10}256 + \frac{1}{2}\log_{10}4}{\log_{10}2}$

Convert:

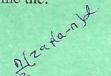

(7 marks)

- - (a) Convert:
 - (i) 371₁₀ to a binary number.
 - (ii) 110101₂ to a denary number.
- 4 1 = 1
- (4 marks)

- (b) Solve the equations:
 - $3^{2} = 5$, correct to 3 decimal places. (i)

1601/103 1602/103 Oct./Nov. 2021 2

Use the inverse matrix method to determine the values of the currents I_1 and I_2 in the (c) circuit figure 1. (10 marks)



- The third and the seventh terms of an arithmetic progression are 6 and 14 respectively. (a) Determine the:
 - (i) common difference:
 - (ii) first term.

(6 marks)

- The sum of the first 5 terms of an arithmetic progression is 125. The eighth term is five (b) times the second term. Determine the first term. (9 marks)
- On commencing employment, a craftsman is paid a basic salary of Ksh 144,000 per (c) annum and an annual increment of Ksh 7,000. Determine the:
 - (i) salary in the ninth year;
 - (ii) total salary received in 10 years.

(5 marks)

5. (a) Simplify:

(i)
$$\sqrt{a^4} \times a^{\frac{3}{2}} \div (a^2)^{\frac{1}{2}}$$

(ii)
$$\frac{\left(\frac{4}{3}\right)^3 \times \left(\frac{3}{5}\right)^{-2}}{\left(\frac{2}{5}\right)^{-3}}$$

olify:

$$\sqrt{a^4} \times a^{\frac{3}{2}} \div (a^2)^{\frac{1}{3}} \qquad \int a^4 + a^3 b + a^2 b^{\frac{1}{3}}.$$

$$\frac{\left(\frac{4}{3}\right)^3 \times \left(\frac{3}{5}\right)^{-2}}{\left(\frac{2}{5}\right)^3} \qquad \qquad \int a^2 + a^3 b + a^2 b^{\frac{1}{3}}.$$

$$\sqrt{a^2} \times 2 \sqrt{a^3} \div 2 \sqrt{a^3}.$$

(11 marks)

The time of swing t seconds of a simple pendulum is given by $t=2\pi\sqrt{\frac{l}{g}}$. Determine the length, t if the time, t is 6.95 seconds (Take $g=9.81\,\mathrm{m/s^2}$). (b) (5 marks)

1601/103 1602/103 Oct./Nov. 2021 3

2 (2a+(n-1)d

- (c) Express as a single logarithm:
 - $\frac{1}{2}\log_{10}x + \frac{1}{3}\log_{10}y \frac{1}{4}\log_{10}z$ (i)
 - $2\log_{10}x^2 + 3\log_{10}y^2 4\log_{10}z^2$ (2) $(2)^2 + \log_{10}(x^2)^3$ (ii) (4 marks)
- In a geometric progression, the sixth term is 8 times the third term and the sum of the 6. (a) seventh and eighth terms is 192.

Determine the:

- (i) common ratio:
- (ii) second term:
- (iii) sum of the first 10 term

(8 marks)

- (b) The sum of the second and third terms of a geometric progression is ,12 and the sum of the fifth and the sixth terms of the same series is $\frac{3}{2}$. Determine the:
 - (i) common ratio:

(Sa 852)

(ii) fourth term.

(8 marks)

An electrician earned Ksh 20,000 from a contract. Determine the number of years he (c) should invest the amount if he is to get Ksh 200,000 at a compound interest of 5% per annum.

(Give your answer correct to 1 decimal place)

(4 marks)

Simplify the expression. $\frac{(x^2y^{\frac{1}{2}})(\sqrt{x}\sqrt[3]y^2)}{\sqrt{(x^5y^3)^4}} \left(x^2\sqrt{y}\right)(\sqrt{x}\sqrt{3}y^2) \left(x\sqrt{3}y^2\right) \left(x\sqrt{3}y^$ 7. (a)

- The resistance R ohms of an electric conductor at any temperature t° C is given by (b) $R = R_0 (1 + \alpha t)$ where R_0 is the initial resistance and α is the temperature coefficient. If $R=25\Omega$ at $t=50^{\circ}$ C and $R=30\Omega$ at 100° C, determine the values of α and R_0 . (8 marks)
- A wireman spent $\frac{1}{3}$ of his salary on food and $\frac{1}{4}$ of the remainder on rent. If he (c) remained with Ksh 10,000, determine:
 - (i) his salary;

money spent on:

I. food;

П. rent. |3 = 1 to all 20,000 (1+05) 1 (1.05) 20,000 (1+05) 1 (1.05) 20,000 (1+05) 1 (1.05) 20,000 (1+05) 1 (1.05) 20,000 (1+05) 20,000 (

(7 marks)

8. (a) Table 1 shows the distribution of marks scored by 100 students in a mathematics test.

Table 1

Marks	Frequency
60 - 62	5
63 - 65	18
66 - 68	42
69 - 71	25
72 - 74	8
75 - 77	2

Using the data in Table 1, determine:

- (i) median;
- (ii) mean;
- (iii) standard deviation.

(10 marks)

(b) Table 2 gives the distribution of time taken to carry out an installation work by trainees.

Table 2

Time (minutes)	Frequency
40 - 49	3
50 - 59	9
60 - 69	15
70 - 79	15
80 - 89	12
90 - 99	6

Determine the:

- (i) lower quartile;
- (ii) upper quartile;
- (iii) semi-interquartile range.

(10 marks)

THIS IS THE LAST PRINTED PAGE.