20.2.0 RADIO SYSTEMS

20.2.1 Introduction

This module is designed to equip the trainee with the necessary knowledge, skills and attitude required to understand the principles of radio transmission and reception. Trainees undertaking this module unit require prior knowledge of electronics and micro electronics. Upon completion of the unit trainees will be able to maintain and repair radio equipment

20.2.2 **General Objectives**

By the end of this module unit, the trainee should be able to:

- a) understand the concepts of radio systems
- b) understand the use and application of radio systems
- c) understand principles of wave propagation and antennas

20.2.3 Module Summary and Time Allocation

Radio Systems

Code	Module Unit	Content	Time Hrs		
			Th.	Pra.	Total
20.2.1	Amplitude Modulated	 Definition of AM Principles of AM Operation of AM modulators Single sideband generation Double sideband 	10	12	22
20.2.2	Am Radio Receivers	 Operation of TRF Operation of superhet radio receiver Choice of local oscillator frequency Interference Choice of I.F. Receiver parameters Automatic gain control 	16	24	40

		Receiver circuits			
20.2.3	Frequency Modulates (FM) Radio Transmitters	 Definition of FM Principles of FM Generation of FM wave Noise Stereophonic FM multiplex 	8	12	20
	FM Radio Receivers	 Operation of FM receiver Operation of F.M. receiver circuits Stereo F.M. multiplex Automatic frequency control Automatic gain control 	4	6	10
20.2.5	Wave Propagation and Antennas	 Fundamentals of electromagnetic waves Modes of radio wave propagation Effects of the environment Fading Principles of antenna radiation Operation of antennas Terminologies 	8	4	12
Total Time			46	58	104

20.2.1 AMPLITUDE MODULATED (AM) RADIOS TRAMSMITTERS

Theory

- 20.2.1T0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - d) define amplitude modulation
 - e) explain principles of amplitude modulation
 - f) explain the operation of AM modulators
 - g) describe methods of single sideband generation
 - h) describe the double side band (DSB)

Competences

The trainee should have the ability to:

- i) Measure AM radio transmitter parameters
- ii) Maintain and repair AM radio transmitters

Content

- 20.2.1T1 Definition of amplitude modulation
- 20.2.1T2 Principles of amplitude modulation

- i) AM theory
- ii) Frequency spectrum
- iii) Power relations in AM wave
- iv) High and low level modulation

20.2.1T3 Operation of AM modulators

- i) Transistor modulator
- ii) Transistor balanced modulator
- iii) Diode single balanced modulator
- i) Cowan modulator
- ii) Ring modulator
- iii) Modulated class C amplifier
- 20.2.1T4 Single Side Band generation
 - i) Filter method
 - ii) Phase shift method
- 20.2.1T5 Double Side-Band

Practice

- 20.2.1P0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) measure AM radio parameters
 - b) maintain and repair AM radio transmitters

Content

20.2.1P1 Measurement of AM radio transmitter parameters

- i) Carrier level
- ii) Modulating signal level
- iii) Modulation depth
- iv) Carrier frequency
- v) Modulating signal frequency
- vi) Bandwidth

20.2.1P2 Maintenance and repair of AM radio transmitters

- i) Carrier frequency generators
- ii) Modulators
- iii) Buffer amplifier
- iv) Audio frequency amplifiers
- v) Frequency synthesizers
- vi) Power amplifiers
- vii) Filter circuits
- viii) Phase shifting networks
- ix) Antennae coupling circuits

Suggested Learning Resources

- i) AM radio transmitter training kit
- ii) Modulated signal generators
- iii) Cathode ray oscilloscope
- iv) Spectrum/ wave Analyzers
- v) Measuring instruments
- vi) Power supply units
- vii) Modulation meter

20.2.2 AMPLITUDE MODULATION (AM) RADIO RECEIVERS

Theory

- 20.2.2TO Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) describe the operation of a tuned radio frequency (T.R.F) radio receiver
 - b) describe the operation of a super heterodyne radio receiver
 - c) explain choice of local oscillator frequency
 - d) explain radio interference and their rejection
 - e) state factors to consider in choosing intermediate frequency
 - f) define receiver parameters
 - g) explain automatic gain control
 - h) explain the operation of selected receiver circuits

Competencies
The trainee should have the ability to:

- i) Measure AM radio receiver parameters
- ii) Repair of AM radio receivers

Content

20.2.2T1 Operation of T.R.F

- i) Antennae
- ii) R.F amplifier
- iii) Loudspeaker

20.2.2T2 Operation of super

heterodyne radio receiver

- i) Antennae
- ii) R.F receiver
- iii) Mixer
- iv) Local oscillator
- v) R.F amplifier
- vi) Detector
- vii) A.F amplifier
- viii) Loud speaker

20.2.2T3 Choice of local oscillator frequency

- 20.2.2T4 Interference and their rejection
 - i) Image signal
 - ii) Co channel
 - iii) Local oscillator radiation
 - iv) I.F trap

20.2.2T5 Choice of intermediate frequency

- i) I.F bandwidth
- ii) Interference signals
- iii) I.F gain and stability
- iv) Adjacent channel (selectivity)
- 20.2.2T6 Definition of receiver parameters
 - i) Sensitivity
 - ii) Selectivity
 - iii) Double splitting

- iv) Adjacent channel ratio
- 20.2.2T7 Automatic gain control (A.G.C)
 - i) No A.G C
 - ii) Delayed A.G.C
 - iii) Simple A.G.C
 - iv) Ideal A.G.C

20.2.2T8 Operation of receiver circuits

- i) Separately excited mixer
- ii) Self excited mixer
- iii) Diode detector
- iv) Muting (squelch)

Practice

20.2.2P0 Specific objectives By the end of the sub module unit, the trainee should be able to:

- a) measure AM radio receiver parameters
- b) identify fault symptoms
- c) carry out static and dynamic test on AM radio receiver
- d) repair AM radio receivers

Content

20.2.2P1 Measurement of AM radio receiver parameters

- i) Sensitivity
- ii) Selectivity
- iii) Interference
- iv) Gain
- v) Output power

20.2.2P2 Fault symptoms

i) No output

- ii) Motor boating
- iii) Dead receiver
- iv) Weak output signal
- v) Intermittent operation
- vi) Wobbling output
- vii) Hissing noise
- viii) Two stations picked at the same dial setting
- ix) Noisy output
- x) Fading

20.2.2P3 Tests

- i) Static
- ii) Dynamic
- 20.2.2P4 Repair of AM radio receivers
 - i) Fault detection
 - ii) Fault location
 - iii) Fault repair
 - iv) Final tests

Suggested Learning

Resources

- i) CRO
- ii) AM radio receiver training kit
- iii) Multimeters
- iv) Bench power supply
- v) Modulated signal generators
- vi) Standard electronic toolkit
- vii) Components

20.2.3 FREQUENCY MODULATED (FM) RADIO TRANSMITTER

Theory

- 20.2.3T0 Specific Objectives

 By the end of the sub

 module unit, the trainee
 - should be able to:
 - a) define frequency modulation
 - b) explain the principles of frequency modulation
 - c) describe methods of generating FM wave
 - d) state the effects of noise on an FM wave
 - e) explain stereophonic FM multiplexing

Competences

The trainee should have the ability to:

- i) Measure FM radio parameters
- ii) Maintain and repair FM radio transmitters

Content

- 20.2.3T1 Definition of frequency modulation
- 20.2.1T2 Principles of frequency modulation
 - -FM theory
- 20.2.3T3 Generation of FM wave
 - i) Transistor reactance modulator
 - ii) Automatic Frequency Control
 - iii) Varacter diode modulator
 - iv) AFC system (block diagram)

210

v) Armstrong systems (block diagram)

20.2.3T4 Noise

- vi) Cochannel interference
- vii)Capture effect
- viii) Noise on carrier

20.2.3T5 Stereophonic FM multiplex

Practice

- 20.2.3P0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) measure FM parameters
 - b) maintain and repair FM transmitters

Content

- 20.2.3P1 Measurement of FM parameters
 - i) Carrier level
 - ii) Carrier frequency
 - iii) Modulating signal frequency
 - iv) Deviation
 - v) Modulation index
 - vi) Bandwidth
- 20.2.3P2 Maintenance and repair
 - i) Carrier frequency generators
 - ii) Modulators
 - iii) Buffer amplifier
 - iv) Audio frequency amplifiers
 - v) Frequency multipliers
 - vi) Discriminator
 - vii)Power amplifiers

viii) Antennae coupling circuits

Suggested Learning Resources:

- i) FM transmitter training kits
- ii) Modulated signal generators
- iii) Cathode Ray Oscilloscope
- iv) Spectrum/wave analyzers
- v) Multimeters
- vi) Bench power supplies

20.2.4 FREQUENCY MODULATED (FM) RADIO RECEIVERS

Theory

- 20.2.4T0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) describe the operation of FM receiver
 - b) explain the operation of receiver circuits
 - c) explain the operation of FM multiplex reception
 - d) explain automatic frequency control (AFC)
 - e) explain automatic gain control (AGC)

Competence

The trainee should have the The trainee should have the ability to::

- i) Measure FM receiver parameters
- ii) Repair FM radio receivers

Content

20.2.4T1 Operation of FM receiver

- i) Block diagram
- ii) r.f amplifier
- iii) mixer
- iv) local oscillator
- v) i.f amplifier
- vi) discriminator
- vii) de emphasis network
- viii) a.f and power amplifiers
- ix) loudspeakers

20.2.4T2 Operation of receiver circuits

- i) amplitude limiter
- ii) slope detector
- iii) phase discriminator
- iv) ratio detector
- 20.2.4T3 Stereo FM multiplex
 - block diagrams
- 20.2.4T4 Automatic frequency control (AFC)
- 20.2.4T5 Automatic gain control (AGC)

Practice

20.2.4P0 Specific Objectives

By the end of the unit, the trainee should be able to:

- a) measure FM radio parameters
- b) identify receive fault symptoms
- c) carry out static and dynamic test
- d) repair FM radio receivers

Content

20.2.4P1 Measurement of FM radio receiver parameters

- i) Gain
- ii) Power output
- iii) Deviation (frequency drift)
- iv) Selectivity
- v) Distortion

20.2.4P2 Fault symptoms

- i) Dead receiver
- ii) Frequency drifts
- iii) Motor boating
- iv) No output
- v) Weak output
- vi) Intermittent operation
- vii) Hissing noise
- viii) Wobbling output
- ix) Noisy output
- x) Fading

20.2.4P3 Static and dynamic tests

20.2.4P4 Repair of FM radio receivers

- i) Fault detection
- ii) Fault location
- iii) Fault repair
- iv) Final tests

212

Suggested Learning Resources:

- i) FM radio receiver training kit
- ii) Distortion meters
- iii) Cathode Ray Oscilloscope
- iv) Multimeters
- v) Standard electronic kit
- vi) Bench power supply
- vii) Modulated signal generators
- viii) Audio signal generators
- ix) Deviation meters

20.2.5 WAVE PROPAGATION AND ANTENNAS

Theory

- 20.2.5T0 Specific Objectives

 By the end of the sub

 module unit, the trainee
 should be able to:
 - a) explain fundamentals of electromagnetic waves
 - b) describe modes of radio wave propagation
 - c) state the effects of the environment on radio waves
 - d) describe fading
 - e) explain principles of antenna radiation

- f) describe the operation of various types of antennas
- g) define various terminologies applied to wave propagation

Competencies The trainee should have the ability to construct and install an aerial

Content

- 20.2.5TI Fundamentals of electromagnetic waves
 - i) Electric field
 - ii) Magnetic field
 - iii) Direction of propagation
 - iv) Free space
- 20.2.5T2 Modes of radio wave propagation
 - i) Ground waves
 - ii) Sky waves
- 20.2.5T3 Effects of the environment
 - i) Reflection
 - ii) Refraction
 - iii) Interference
 - iv) Diffraction
- 20.2.5T4 Fading
 - i) General fading
 - ii) Selective fading
- 20.2.5T5 Principles of antenna radiation
 - i) Closed loops of magnetic flux
 - ii) Closed loops of electric flux
 - iii) Electromagnetic wave

easytvet.com

- iv) Polarization
- v) Induction field
- vi) Dipole
- 20.2.5T6 Operation of various types of antennas
 - i) rod aerial
 - ii) loop aerial
 - iii) whip aerial
 - iv) broadside array
 - v) end-fire array
 - vi) folded dipole
 - vii) yagi uda
 - viii) rhobic
 - ix) radiation patterns

20.2.5T7 Terminologies

- i) Wave propagation
 - critical

frequency

- maximum usable frequency
- skip distance
- multi-hop transmission
- virtual height
- ducts
- ii) Antennas
 - directive
 - radiation resistance
 - beamwidth
 - polarization

- front-to-back ratio
- gain

Practice

- 20.2.5P0 Specific Objectives
 By the end of the sub
 module unit, the trainee
 should be able to:
 - a) construct an aerial
 - b) install an aerial

Content

- 20.2.5P1 Construction of aerials
 - i) Reflector
 - ii) Dipole
 - iii) Directors
- 20.2.5P2 Installation of aerials
 - i) Aerial coupling
 - ii) Directivity

Suggested Learning Resources

- i) Aluminum rods
- ii) Receiver (TV/Radio)
- iii) Screws
- iv) Coaxial cable
- v) Twin wire
- vi) Aluminum plate
- vii) Drilling and cutting tools